TRANSFER CASE (BEVEL GEAR DIFFERENTIAL)

1. INTRODUCTION .. 2
2. SPECIFICATIONS ... 2
3. TRANSFER CASE REMOVAL .. 6
4. TRANSFER CASE DISASSEMBLY .. 6
 4.1 Disassembly - Upper Input Shaft Assembly ... 7
 4.1.1 Cleaning and Inspection ... 8
 4.2 Disassembly - Lower Front Output Shaft ... 8
 4.2.1 Cleaning and Inspection ... 8
 4.3 Disassembly - Lower Rear Output Shaft ... 8
 4.3.1 Cleaning and Inspection ... 9
 4.4 Disassembly - Center Shaft Assembly ... 9
 4.4.1 Cleaning and Inspection ... 9
 4.5 Disassembly - Upper Shift Rod .. 9
 4.5.1 Cleaning and Inspection ... 9
 4.6 Disassembly - Lower Shift Rod .. 10
 4.6.1 Cleaning and Inspection ... 10
 4.7 Disassembly - Bevel Gear Differential Assembly .. 10
 4.7.1 Cleaning and Inspection ... 10
5. CLEANING, INSPECTION & REPAIR ... 11
 5.1 Cleaning ground & polished surfaces .. 11
 5.1.1 Gasket removal ... 11
 5.1.2 Steam cleaning ... 11
 5.2 Cleaning rough parts ... 11
 5.2.1 Complete assemblies ... 11
 5.2.2 Drying ... 11
 5.2.3 Corrosion prevention ... 11
 5.3 Inspection ... 11
 5.4 Repair .. 12
 5.5 Silicone (RTV) 732 and Loctite 515 ... 13
 5.5.1 Service ... 13
 5.5.2 Application ... 13
6. RE-ASSEMBLY PROCEDURES .. 13
 6.1 Assembly - Upper Input Shaft Assembly ... 13
 6.2 Assembly - Lower Front Output Shaft Assembly .. 14
 6.3 Assembly - Lower Rear Output Shaft Assembly ... 14
 6.4 Assembly - Center Shaft Assembly .. 15
 6.5 Assembly - Upper Shift Rod ... 15
 6.6 Assembly - Lower Shift Rod Assembly ... 15
 6.7 Re-assembly - Bevel Gear Differential Assembly ... 15
7. TRANSFER CASE ASSEMBLY PROCEDURE .. 16
8. INSTALLATION .. 19
1. INTRODUCTION.

The transfer case is mounted in the vehicle drive line. It transmits power vertically downward so that it may distribute to the front and rear axles. It is a three shaft 2-speed unit. The top shaft receives engine power from the transmission through the use of a driven shaft. The power is then transferred to the center shaft and bottom shaft in turn. The bottom shaft provides power to the front and rear axles via drive shafts. Selection of either speed is accomplished by a shift lever and connecting rod to the transfer case shift rod.

A bevel gear type interaxle differential assembly is provided in the case to allow different front output and rear output shaft speeds encountered when turning a corner or due to tire characteristics. An air actuated, driver selected, differential locking mechanism is provided to lock differential action for positive transfer of power to the front and rear axles under wheel slip conditions. The case forms a sump for lubricating oil and a pump is provided for positive lubrication.

2. SPECIFICATIONS.

Make . . . Oshkosh
Model . . . 55000-Series
Speeds . . . 2
Shafts . . . 3
Type of Gear . . . Helical
Method of Speed Selection Air Shift
Figure 2. Transfer Case Assembly (Rear Housing).
Legend for Figure 2.

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th></th>
<th>Description</th>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Plug</td>
<td>2</td>
<td>Capscrew</td>
<td>3</td>
<td>Lockwasher</td>
</tr>
<tr>
<td>5</td>
<td>Shims</td>
<td>6</td>
<td>Capscrew</td>
<td>7</td>
<td>End plate</td>
</tr>
<tr>
<td>9</td>
<td>Bearing cone</td>
<td>10</td>
<td>Spacer</td>
<td>11</td>
<td>Plug</td>
</tr>
<tr>
<td>13</td>
<td>Lockwasher</td>
<td>14</td>
<td>End cap</td>
<td>15</td>
<td>Shims</td>
</tr>
<tr>
<td>17</td>
<td>Caged roller</td>
<td>18</td>
<td>Spacer</td>
<td>19</td>
<td>Caged roller</td>
</tr>
<tr>
<td>21</td>
<td>Spacer</td>
<td>22</td>
<td>Upper shaft</td>
<td>23</td>
<td>Clutch collar</td>
</tr>
<tr>
<td>25</td>
<td>Caged roller</td>
<td>26</td>
<td>Spacer</td>
<td>27</td>
<td>Caged roller</td>
</tr>
<tr>
<td>29</td>
<td>Adapter</td>
<td>30</td>
<td>Hose</td>
<td>31</td>
<td>Adapter</td>
</tr>
<tr>
<td>33</td>
<td>Lockwasher</td>
<td>34</td>
<td>Upper shift cover</td>
<td>35</td>
<td>Gear, 55T</td>
</tr>
<tr>
<td>37</td>
<td>Bearing cone</td>
<td>38</td>
<td>Bearing cup</td>
<td>39</td>
<td>Spacer</td>
</tr>
<tr>
<td>41</td>
<td>End plate</td>
<td>42</td>
<td>Yoke</td>
<td>43</td>
<td>Oil seal</td>
</tr>
<tr>
<td>45</td>
<td>Plate</td>
<td>46</td>
<td>Capscrew</td>
<td>47</td>
<td>Lockwasher</td>
</tr>
<tr>
<td>49</td>
<td>Bearing cap</td>
<td>50</td>
<td>Bearing assembly</td>
<td>51</td>
<td>Retaining ring</td>
</tr>
<tr>
<td>53</td>
<td>Upper shift rod</td>
<td>54</td>
<td>Ball</td>
<td>55</td>
<td>Spring</td>
</tr>
<tr>
<td>57</td>
<td>Capscrew</td>
<td>58</td>
<td>Lockwire</td>
<td>59</td>
<td>Spacer</td>
</tr>
<tr>
<td>61</td>
<td>Spacer</td>
<td>62</td>
<td>Capscrew</td>
<td>63</td>
<td>Lockwasher</td>
</tr>
<tr>
<td>65</td>
<td>Flatwasher</td>
<td>66</td>
<td>Rear housing</td>
<td>67</td>
<td>Stud</td>
</tr>
<tr>
<td>69</td>
<td>Spacer</td>
<td>70</td>
<td>Spacer</td>
<td>71</td>
<td>Fork</td>
</tr>
<tr>
<td>73</td>
<td>Capscrew</td>
<td>74</td>
<td>Shift rod</td>
<td>75</td>
<td>Clutch collar</td>
</tr>
</tbody>
</table>

295-45B, Page 4
Figure 3. Transfer Case Assembly (Front Housing).
3. TRANSFER CASE REMOVAL.

Remove drain at bottom of transfer case. Drain oil. Disconnect speedometer sending unit, air lines, shift linkage and bracket, and prop shafts. Unfasten mounting bolts and biscuits from mounting brackets. Using a suitable lifting device remove transfer case from vehicle and install it on a suitable maintenance stand.

4. TRANSFER CASE DISASSEMBLY.

Notes: Required tools and special tools for this maintenance action are:
1. Lifting device with minimum capacity of 1000 lbs. (454 Kg).
2. Torque wrench with minimum capacity of 350 ft. lbs. (475 N.m)
3. Dial indicator
4. Hydraulic press
5. Gear puller

(1) Position transfer case in maintenance stand, with front housing (Figure 3, Item 69) facing up.

(2) Remove two capscrews (Figure 3, Item 6) and end plate (6) from upper shaft (15).

(3) Using a puller remove yoke (Figure 3, Item 5) from upper shaft (15).

(4) Remove two capscrews (Figure 3, Item 90) and end plate (89) from shaft (73).

(5) Using a puller remove yoke (Figure 3, Item 88) from shaft (73).

(6) Tag and disconnect hose (Figure 3, Item 37) from adapters (36 and 38).

(7) Remove six capscrews (Figure 3, Item 86), lockwashers (85), bearing cap (84), three shims (80) and lower front output shaft assembly from enclosure (74) and bevel gear differential.

(8) Remove eight capscrews (Figure 3, Item 76) and lockwashers (75) from enclosure (74) and front housing (69).

(9) Install jack bolts in holes on enclosure (Figure 3, Item 74), tighten alternately to separate enclosure from front housing (69) and dowel pin (39). Remove enclosure (74).

⚠️ WARNING

Stay clear of bevel gear differential assembly when supported by lifting device. Bevel gear differential may fall and cause serious injury to personnel.

(10) Using a suitable lifting device, remove bevel gear differential assembly from transfer case.

(11) Remove speedometer sending unit (Figure 3, Item 35) from end cap (22).

(12) Remove six capscrews (Figure 3, Item 29), lockwashers (28), and end cap (22), from front housing (69).

(13) Remove oil seal (Figure 3, Item 2), six capscrews (4), lockwasher (3), and end cap (1) from front housing (69).
(14) Loosen jam nut (Figure 3, Item 26) and remove rod end (27) and oil seal (25) from upper shift rod (Figure 2, Item 53).

(15) Remove breather (Figure 3, Item 24), elbow (23) and adapters (36 and 38) from front housing (69).

(16) Position transfer case in maintenance stand with rear housing (Figure 2, Item 66) facing up.

(17) Tag and disconnect hose (Figure 2, Item 30) from adapters (29 and 31).

(18) Remove two capscrews (Figure 2, Item 32), lockwashers (33), and upper shift cover (34) from rear housing (66).

⚠️ CAUTION

Diaphragm is spring loaded. Use caution when removing air chamber from transfer case. Failure to follow this procedure can result in serious injury.

⚠️ WARNING

Stay clear of rear housing when supported by lifting device. Rear housing may fall and cause serious injury to personnel.

NOTE

Inner detent ball will fall out of rear housing case when separated from shift rod.

(19) Remove two capscrews (Figure 2, Item 62), lockwashers (63), and air differential chamber (64) from rear housing (66).

(20) Remove two adapters (Figure 2, Items 29 and 31) from rear housing (66) and bearing cap (49).

(21) Remove two capscrews (Figure 2, Item 40) and end plate (41) from shaft (52).

(22) Using a puller, remove yoke (Figure 2, Item 42) from shaft (52).

(23) Remove six capscrews (Figure 2, Item 46), lockwashers (47), bearing cap (49), and lower rear shaft assembly from rear housing (66).

(24) Remove six capscrews (Figure 2, Item 12), lockwashers (13), end cap (14) and shims (15) from rear housing (66).

(25) Remove six capscrews (Figure 2, Item 2), lockwashers (3), end cap (4) and shims (5) from rear housing (66).

(26) Remove plug (Figure 2, Item 56), outer detent spring (55) and outer detent ball (54) from rear housing (66).

(27) Remove 20 capscrews (Figure 3, Item 68), and flatwashers (65) from rear housing (Figure 2, Item 66) and front housing (Figure 3, Item 69).

⚠️ WARNING

Stay clear of center shaft assembly and upper input shaft and shift rod assembly when supported by lifting device. The assemblies may fall and cause serious injury to personnel.

NOTE

Do steps 32, 33, 34, and 35 if bearing cups or bearing cones fail inspection.

(28) Using a suitable lifting device separate transfer case halves using jack bolt locations provided at top and bottom. Remove rear housing (Figure 2, Item 66) from front housing (Figure 3, Item 69) keeping it parallel to prevent binding of the shift rod assembly and dowel pins in the transfer case halves.

(29) Using a suitable lifting device, remove center shaft assembly from front housing (Figure 3, Item 69).

(30) Using a suitable lifting device remove upper input shaft and shift rod assembly from front housing (Figure 3, Item 69).

(31) Remove six capscrews (Figure 3, Item 47) and bearing support (48) from front housing (69).

NOTE

Do steps 32, 33, 34, and 35 if bearing cups or bearing cones fail inspection.

(32) Remove bearing cup (Figure 3, Item 64) from front housing (66).

(33) Remove bearing cup (Figure 3, Item 44) from bearing support (48).

(34) Remove bearing cup (Figure 3, Item 19 and Figure 2, Item 38) from front housing (69).
(35) Remove bearing cup (Figure 2, Item 8) and Figure 3, Item 10) from rear housing (Figure 2, Item 66).

4.1 Disassembly - Upper Input Shaft Assembly.

(1) Remove spacer (Figure 2, Item 39) from upper shaft (22).

(2) Using a puller, remove bearing cone (Figure 2, Item 37), spacer (36), and gear (35) from upper shaft (22).

(3) Remove two caged rollers (Figure 2, Items 27 and 25), spacers (26 and 24), and clutch collar (23) from upper shaft (22).

(4) Remove two capscrews (Figure 2, Item 6) and end plate (7) from upper shaft (22).

(5) Using a puller, remove bearing cone (Figure 2, Item 9), spacer (10), and gear (20) from upper shaft (22).

(6) Remove two caged rollers (Figure 2, Items 17 and 19) and spacers (18 and 21) from upper shaft (22).

4.1.1 Cleaning and Inspection.

⚠️ WARNING
Adhesives, solvents, and sealing compounds can burn easily, can give off harmful vapors, and are harmful to skin and clothing. To avoid injury or death, keep away from open fire and use in well ventilated area. If adhesive, solvent, or sealing compound gets on skin or clothing, wash immediately with soap and water.

(1) Clean all metal parts in dry cleaning solvent.

(2) Inspect all parts for wear or damage.

(3) Remove all nicks and burrs from machined surfaces.

(4) Replace all worn or damaged parts.

4.2 Disassembly - Lower Front Output Shaft.

(1) Remove oil seal (Figure 3, Item 87) from bearing cap (84).

4.2.1 Cleaning and Inspection.

⚠️ WARNING
Use care when removing snap and retaining rings. Snap and retaining rings are under spring tension and can act as projectiles when released and could cause severe eye injury.

(5) Using a puller, remove both bearing cups from bearing assembly (Figure 3, Item 81) and retaining ring (82) from bearing cap (84).

4.3 Disassembly - Lower Rear Output Shaft.

⚠️ WARNING
When using a hydraulic press for removal or installation of bearings, bushings, and gears, wear a face shield to prevent possible injury to personnel.

(2) Position lower front output shaft assembly in a press supported by bearing cap (Figure 3, Item 84).

⚠️ CAUTION
Properly support shaft during removal. Shaft may drop suddenly. Failure to comply may result in damage to equipment.

(3) Press output shaft (Figure 3, Item 73) from bearing assembly (81), retaining ring (82), and bearing cap (84).

(4) Remove both bearing cones of bearing assembly (81) from bearing cap (84).

4.3.1 Cleaning and Inspection.

⚠️ WARNING
Adhesives, solvents, and sealing compounds can burn easily, can give off harmful vapors, and are harmful to skin and clothing. To avoid injury or death, keep away from open fire and use in well ventilated area. If adhesive, solvent, or sealing compound gets on skin or clothing, wash immediately with soap and water.

(1) Clean all metal parts in dry cleaning solvent.

(2) Inspect all parts for wear or damage.

(3) Remove all nicks and burrs from machined surfaces.

(4) Replace all worn or damaged parts.
(1) Remove oil seal (Figure 2, Item 43) from bearing cap (49).

(2) Remove clutch collar (Figure 2, Item 75) from shaft (52).

WARNING

When using a hydraulic press for removal or installation of bearings, bushings, and gears, wear a face shield to prevent possible injury to personnel.

(3) Position lower rear output assembly in a press, supported by bearing cap (Figure 2, Item 49).

CAUTION

Properly support shaft during removal. Shaft may drop suddenly. Failure to comply may result in damage to equipment.

(4) Press output shaft (Figure 2, Item 52) out of bearing assembly (50) retainer ring (51) and bearing cap (49).

(5) Using a puller, remove both bearing cones of bearing assembly (Figure 2, Item 50) from bearing cap (49).

WARNING

Use care when removing snap and retaining rings. Snap and retaining rings are under spring tension and can act as projectiles when released and could cause severe eye injury.

(6) Using a puller, remove both bearing cups of bearing assembly (Figure 2, Item 50) and retainer ring (51) from bearing cap (49).

4.3.1 Cleaning and Inspection.

WARNING

Adhesives, solvents, and sealing compounds can burn easily, can give off harmful vapors, and are harmful to skin and clothing. To avoid injury or death, keep away from open fire and use in well ventilated area. If adhesive, solvent, or sealing compound gets on skin or clothing, wash immediately with soap and water.

(1) Clean all metal parts in dry cleaning solvent.

(2) Inspect all parts for wear or damage.

(3) Remove all nicks and burrs from machined surfaces.

(4) Replace all worn or damaged parts.

4.4 Disassembly - Center Shaft Assembly.

(1) Using a puller, remove bearing cone (Figure 3, Item 11), spacer (12), gear (13), and spacer (14) from shaft (15).

(2) Remove two capscrews (Figure 3, Item 21) and pulse wheel (20) from shaft (15)

(3) Using a puller, remove bearing cone (Figure 3, Item 18), spacer (17), and gear (16) from shaft (15).

4.4.1 Cleaning and Inspection.

WARNING

Adhesives, solvents, and sealing compounds can burn easily, can give off harmful vapors, and are harmful to skin and clothing. To avoid injury or death, keep away from open fire and use in well ventilated area. If adhesive, solvent, or sealing compound gets on skin or clothing, wash immediately with soap and water.

(1) Clean all metal parts in dry cleaning solvent.

(2) Inspect all parts for wear or damage.

(3) Remove all nicks and burrs from machined surfaces.

(4) Replace all worn or damaged parts.

4.5 Disassembly - Upper Shift Rod.

(1) Remove two spacers (Figure 2, Items 59 and 61) from shift rod (53).
(2) Cut lockwire (Figure 2, Item 58) holding two capscrews (57).

(3) Remove two capscrews (Figure 2, Item 57) from upper shift fork (60).

(4) Remove shift rod (Figure 2, Item 53) from upper shift fork (60).

4.5.1 Cleaning and Inspection.

WARNING

Adhesives, solvents, and sealing compounds can burn easily, can give off harmful vapors, and are harmful to skin and clothing. To avoid injury or death, keep away from open fire and use in well ventilated area. If adhesive, solvent, or sealing compound gets on skin or clothing, wash immediately with soap and water.

(1) Clean all metal parts in dry cleaning solvent.

(2) Inspect all parts for wear or damage.

(3) Remove all nicks and burrs from machined surfaces.

(4) Replace all worn or damaged parts.

4.6 Disassembly - Lower Shift Rod.

(1) Remove spacer (Figure 2, Item 68) and eight spring disks (69 and 70).

(2) Cut lockwire (Figure 2, Item 72) from capscrew (73) and remove capscrew (73) from fork (71).

(3) Slide shift rod (Figure 2, Item 74) from fork (71).

4.6.1 Cleaning and Inspection.

WARNING

Adhesives, solvents, and sealing compounds can burn easily, can give off harmful vapors, and are harmful to skin and clothing. To avoid injury or death, keep away from open fire and use in well ventilated area. If adhesive, solvent, or sealing compound gets on skin or clothing, wash immediately with soap and water.

(1) Clean all metal parts in dry cleaning solvent.

(2) Inspect all parts for wear or damage.

(3) Replace all worn or damaged parts.

4.7 Disassembly - Bevel Gear Differential Assembly.

NOTE

Matchmark bevel gear differential case prior to disassembly.

(3) Remove eight cotter pins (Figure 4, Item 5), castle nuts (6) and capscrews (7) from bevel gear differential case (13 and 19).

(4) Remove two thrust washers (Figure 4, Item 14, two side gears (18), four pinion thrust washers (15), four pinions (17), and spider (16) from bevel gear differential case (13 and 19).
4.7.1 Cleaning and Inspection.

WARNING

Adhesives, solvents, and sealing compounds can burn easily, can give off harmful vapors, and are harmful to skin and clothing. To avoid injury or death, keep away from open fire and use in well ventilated area. If adhesive, solvent, or sealing compound gets on skin or clothing, wash immediately with soap and water.

1. Clean all metal parts in dry cleaning solvent.
2. Inspect all parts for wear or damage.
3. Remove all nicks and burrs from machined surfaces.
4. Replace all worn or damaged parts.

5. CLEANING, INSPECTION & REPAIR.

CAUTION

Exercise care to avoid skin rashes, fire hazards, and inhalation of vapors when using solvent type cleaners.

WARNING

GASOLINE SHOULD BE AVOIDED! DO NOT clean these parts in a hot solution tank or with water and alkaline solutions, such as sodium hydroxide, orthosilicates or phosphates.

5.1 Cleaning ground & polished surfaces. Parts having ground and polished surfaces, such as gears, bearings, shafts, and collars, should be cleaned in a suitable solvent, such as kerosene, diesel fuel oil, or dry cleaning solvent.

5.1.1 Gasket removal. Clean all mating surfaces where fiber or liquid gasket material is used. It may be necessary to use a scraper to completely remove gasket materials. Be careful not to damage mating surfaces.

5.1.2 Steam cleaning. Steam cleaning is not recommended for assembled drive units after they have been removed from the housing. When this method of cleaning is used, water is trapped in cored passages of castings and in close clearances between parts, as well as on parts. This can lead to corrosion (rust) of critical parts of the assembly, and possibility of circulating rust particles in the lubricant. Premature failure of bearings, gears, and other parts can be caused by this practice. Assembled drive units cannot be properly cleaned by steam cleaning, dipping, or slushing. Complete drive unit disassembly is a necessary prerequisite to thorough cleaning.

5.2 Cleaning rough parts.

CAUTION

Exercise care to avoid skin rashes and inhalation of vapors when using alkali cleaners.

Rough parts, such as differential carrier castings, cast brackets, and some brake parts may be cleaned in hot solution tanks with mild alkali solutions providing these parts are not ground or polished. The parts should remain in the tank long enough to be thoroughly cleaned and heated through. This will aid the evaporation of the rinse water. The parts should be thoroughly rinsed after cleaning to remove all traces of alkali.

5.2.1 Complete assemblies. Completely assembled axles, torque dividers, and transfer cases may be steam cleaned on the outside only to facilitate initial removal and disassembly, providing all openings are closed. Breathers, vented shift units, and all other openings should be tightly covered or closed to prevent the possibility of water entering the assembly.

5.2.2 Drying. Parts should be completely dried immediately after cleaning. Use soft, clean, lintless absorbent paper towels, or cloth free of abrasive material such as lapping compound, metal fillings, or contaminated oil. Bearings should never be dried by spinning with compressed air.

5.2.3 Corrosion prevention. Parts that have been cleaned, dried, inspected, and are to be immediately reassembled should be coated with light oil to prevent corrosion. If these parts are to be stored for any length of time, they should be treated with a good rust preventive, and wrapped in special paper, or other material designed to prevent corrosion.

5.3 Inspection. Inspect all bearings, cups, and cones, including those not removed from parts of the drive unit, and replace if rollers or cups are worn, pitted, or damaged in any way. Remove parts needing replacement with a suitable puller or in a press with sleeves. Avoid use of drifts and hammers. They may easily mutilate or distort components parts.

If any of the following bearing conditions exist, bearings must be replaced:

1. Large ends of rollers worn flush to the recess, or the radii at the large ends of the rollers worn sharp. Refer to Figure 5.
(2) Visible step wear, particularly at the small end of the roller track or deep indentations, cracks or breaks in the bearing cup and/or cone surfaces. Refer to Figure 6.

(3) Bright rubbing marks on the dark phosphate surface of the bearing cage. Refer to Figure 7.

(4) Etching or pitting on functioning surface. Refer to Figure 8.

(5) Spalling or flaking on the bearing cup and/or cone surfaces. Refer to Figure 9.

(6) Inspect hypoid/generoid gears for wear or damage. Gears which are worn, ridged, pitted or scared should be replaced. When it is necessary to replace either the pinion or gear of a set, the entire gear set must be replaced.

5.4 Repair.

(1) Replace all worn or damaged parts. Hex nuts with rounded corners, all washers if damaged, oil seals, and gaskets, or silicone or Loctite 515 gasket material should be replaced at the time of overhaul.

(2) Remove nicks and burrs from machined or ground surfaces. Threads must be clean and free to obtain accurate adjustment and correct torque. A fine mill file or India stone is suitable for this purpose. Studs must be tight prior to reassembling the parts.

(3) When assembling component parts, use a press where possible.

(4) Tighten all the nuts to specified torque.
(5) DO NOT REPAIR WELD. In the interest of safety and preserving the service life of the transfer case assemblies, we recommend assemblies NOT be repair welded. Repair welding can detract from the structural integrity of a component, particularly as to heat-treated parts. The benefit of heat-treatment may be nullified by welding.

5.5 Silicone (RTV) 732 and Loctite 515.

5.5.1 Service. Removal of all gaskets including silicone RTV 732 and Loctite 515 is accomplished by peeling or scraping the used gasket off both mating surfaces.

5.5.2 Application. Application of silicone RTV 732 or Loctite 515 gasket material is as follows:

1. Remove dirt, grease or moisture from both mating surfaces.

2. Dry both surfaces.

⚠️ CAUTION

Minor concentration of acetic acid vapor may be produced during application. Adequate ventilation should be provided when silicone (RTV) is applied in confined areas. Further, eye contact with silicone (RTV) gasket materials may cause irritation; if eye contact takes place, flush eyes with water for 15 minutes and have eyes examined by a doctor.

3. Apply a continuous thin bead, approximately 3/16” diameter completely around one mating surface and around the edge of all fastener holes to assure complete sealing and prevent leakage.

4. Assemble the components immediately to permit silicone (RTV) or Loctite 515 gasket material to spread evenly. Wait 20 minutes before refilling with lubricant.

NOTE

Failure to use appropriate gasket material will cause leaks.

6. RE-ASSEMBLY PROCEDURES.

6.1 Assembly - Upper Input Shaft Assembly.

1. Coat caged rollers (Figure 2, Items 17, 19, 25, and 27) with Lubriplate.

⚠️ WARNING

When using a hydraulic press for removal or installation of bearings, bushings, and gears, wear a face shield to prevent possible injury to personnel.

2. Place input shaft (Figure 2, Item 22) in press so spline end is up.

3. Install spacer (Figure 2, Item 21), caged roller (19), spacer (18) and caged roller (17) on shaft (22).

4. Press gear (Figure 2, Item 20) on shaft (22).

5. Install spacer (Figure 2, Item 10) on shaft (22).

6. Press bearing cone (Figure 2, Item 9) on shaft (22). Seat against spacer (10).

⚠️ WARNING

Adhesives, solvents, and sealing compounds can burn easily, can give off harmful vapors, and are harmful to skin and clothing. To avoid injury or death, keep away from open fire and use in well ventilated area. If adhesive, solvent, or sealing compound gets on skin or clothing, wash immediately with soap and water.

7. Coat threads of two capscrews (Figure 2, Item 6) with Loctite 242.

8. Install end plate (Figure 2, Item 7) and two capscrews (6) on shaft (22). Tighten capscrews to 60 ft. lbs. (81 N·m).

9. Turn upper input shaft (Figure 2, Item 22) over in press.

10. Install spacer (Figure 2, Item 24), caged roller (25), spacer (26), and caged roller (27) on shaft (22).

11. Install clutch collar (Figure 2, Item 23) on shaft (22).

12. Press gear (Figure 2, Item 35) on shaft (22). Seat against spacer (24).

13. Install spacer (Figure 2, Item 36) on shaft (22).

14. Press bearing cone (Figure 2, Item 37) on shaft (22). Seat against spacer (36).

15. Install spacer (39) on shaft (22).
6.2 Assembly - Lower Front Output Shaft Assembly.

NOTE

During assembly make sure the tapered bearing cones are properly seated.

WARNING

Use care when installing snap and retaining rings. Snap and retaining rings are under spring tension and can act as projectiles when released and could cause severe eye injury.

1. Install retaining ring (Figure 3, Item 82) inside bearing cap (84).

CAUTION

Bearing assemblies are a matched set. Caution should be taken when installing.

2. Press both bearing cups from bearing assembly (Figure 3, Item 81) in bearing cap (84).

WARNING

When using a hydraulic press for removal or installation of bearings, bushings, and gears, wear a face shield to prevent possible injury to personnel.

3. Press one bearing cone of bearing assembly (Figure 3, Item 81) on shaft (73) until seated against shaft shoulder.

4. Install bearing cap (Figure 3, Item 84) on shaft (73) with bearing cone.

5. Press other bearing cone of bearing assembly (Figure 3, Item 81) on shaft (73), until seated against bearing cup.

6. Apply Loctite 515 to outer edge of oil seal (Figure 3, Item 87) and install oil seal in bearing cup (84).

6.3 Assembly - Lower Rear Output Shaft Assembly.

NOTE

During assembly make sure the tapered bearing cones are properly seated.

WARNING

Use care when installing snap and retaining rings. Snap and Retaining rings are under spring tension and can act as projectiles when released and could cause severe eye injury.

1. Install retaining ring (Figure 2, Item 51) inside bearing cap (49).

WARNING

When using a hydraulic press for removal or installation of bearings, bushings, and gears, wear a face shield to prevent possible injury to personnel.

2. Press both bearing cups from bearing assembly (Figure 2, Item 50) in bearing cap (49).

CAUTION

Bearing assemblies are a matched set. Caution should be taken when installing.

3. Press one bearing cone of bearing assembly (Figure 2, Item 50) on shaft (52) seated against shaft shoulder.

4. Install bearing cap (Figure 2, Item 49) on shaft (52) with bearing cone.
(5) Press other bearing cone of bearing assembly (Figure 2, Item 50) on shaft (52), seated against bearing cup.

(6) Install oil seal (Figure 2, Item 43) in bearing (49).

(7) Install clutch collar (Figure 2, Item 75) on shaft (52).

6.4 Assembly - Center Shaft Assembly.

⚠️ WARNING
When using a hydraulic press for removal or installation of bearings, bushings, and gears, wear a face shield to prevent possible injury to personnel.

(1) Press center shaft (Figure 3, Item 15) on gear (13) until shaft bearing shoulder is protruding through gear face.

(2) Install spacer (Figure 3, Item 12) and press bearing cone (11) on center shaft (15).

(3) Install spacer (Figure 3, Item 14) and press on gear (16) on center shaft (15).

(4) Install spacer (Figure 3, Item 17) and press bearing cone (18) on center shaft (15).

⚠️ WARNING
Adhesives, solvents, and sealing compounds can burn easily, can give off harmful vapors, and are harmful to skin and clothing. To avoid injury or death, keep away from open fire and use in well ventilated area. If adhesive, solvent, or sealing compound gets on skin or clothing, wash immediately with soap and water.

(5) Coat threads of two capscrews (Figure 3, Item 21) with Locktite 242.

(6) Install pulse wheel (Figure 3, Item 20) and two capscrews (21) on center shaft (15). Tighten capscrews to 40 ft. lbs. (54 N·m).

6.5 Assembly - Upper Shift Rod.

(1) Slide shift rod (Figure 2, Item 53) in fork (60).

(2) Apply Loctite 242 to two capscrews (Figure 2, Item 57) and install. Tighten capscrews to 40 ft. lbs. (54 N·m).

(3) Secure two capscrews (Figure 2, Item 57) together with lockwire (58).

(4) Install two spacers (Figure 2, Items 59 and 61) on shift rod (53).

6.6 Assembly - Lower Shift Rod Assembly.

(1) Slide shift rod (Figure 2, Item 74) in fork (71).

⚠️ WARNING
Adhesives, solvents, and sealing compounds can burn easily, can give off harmful vapors, and are harmful to skin and clothing. To avoid injury or death, keep away from open fire and use in well ventilated area. If adhesive, solvent, or sealing compound gets on skin or clothing, wash immediately with soap and water.

(2) Apply Loctite 242 to capscrew (Figure 2, Item 73).

(3) Align holes and install one capscrew (Figure 2, Item 73). Tighten capscrew to 40 ft. lbs. (54 N·m).

(4) Secure capscrew (Figure 2, Item 73) with lockwire (72).

(5) Install eight spring disks (Figure 2, Items 69 and 70), alternating concaved surfaces, in pairs.

(6) Install spacer (Figure 2, Item 68).

6.7 Re-assembly - Bevel Gear Differential Assembly.

NOTE
Coat all parts with SAE 50 motor oil at assembly.

(1) Install spider (Figure 4, Item 16), four pinions (17), four pinion thrust washers (15), two side gears (18) and two thrust washers (14) in bevel gear differential case (13 and 19).

(2) Align match marks on bevel gear differential case and install capscrews (Figure 4, Item 7), castle nut (6) on bevel gear differential case (13 and 19).

⚠️ WARNING
When using a hydraulic press for removal or installation of bearings, bushings, and gears, wear a face shield to prevent possible injury to personnel.

(3) Press gear (Figure 4, Item 8) on bevel gear differential case (13)
(4) Press bearing cones (Figure 4, Items 4 and 8) on bevel gear differential case (13 and 19).

(5) Install spacers (Figure 4, Items 3 and 10), locking washers (2 and 11) and pat locknuts (10 and 12) on bevel gear differential case (13 and 19).

(6) Bend tangs on locking washers (Figure 4, Items 2 and 11) over.

7. TRANSFER CASE ASSEMBLY PROCEDURE.

(1) With front housing (Figure 3, Item 69) installed on maintenance stand, install bearing cups (19) and Figure 2, Item 38) in front housing (Figure 3, Item 69).

(2) Install bearing support (Figure 3, Item 48) with six capscrews (47) in front housing (Figure 3, Item 69).

(3) Install bearing cup (Figure 3, Item 44) in bearing support (48).

(4) With rear housing (Figure 2, Item 66) positioned on a work bench install bearing cups (Figure 2, Item 8 and Figure 3, Item 10).

(5) Rotate front housing (Figure 3, Item 69) so the front is facing up.

(6) Coat bearing cone (Figure 3, Items 45 and 63) on bevel gear differential assembly with Lubriplate.

WARNING

Stay clear of bevel gear differential assembly when supported by lifting device. Bevel gear differential assembly may fall and cause serious injury to personnel.

NOTE

Make sure bearing cone is properly seated in bearing cup of support bracket.

(7) Using a suitable lifting device, install bevel gear differential assembly in front housing (Figure 3, Item 69) and support bracket (Figure 3, Item 48).

(8) Apply Loctite 515 to the facing of enclosure (Figure 3, Item 74).

(9) Install enclosure (Figure 3, Item 74) while aligning dowel pins (43) on front housing (69).

(10) Coat threads of capscrews (Figure 3, Item 76) with Loctite 242.

(11) Install eight lockwashers (Figure 3, Item 75) and capscrews (76) on enclosure (74) and front housing (69). Tighten capscrews to 60 ft. lbs. (81 N·m).

(12) Position lower front output shaft assembly on enclosure (Figure 3, Item 74).

(13) Install two lockwashers (Figure 3, Item 85) and capscrews (86) in bearing cap (84) and enclosure (74).

(14) Rotate front housing (Figure 3, Item 69) over so bottom is facing up.

(15) Position dial indicator on milled surface of front housing (Figure 3, Item 69).

NOTE

End play must be 0.003 - 0.006 in. (0.076 - 0.15 mm). If end play is less than 0.003 in. (0.075 mm), shims must be added. If end play is greater than 0.006 in. (0.15 mm), shims must be removed.

(16) Check and record end play measurements on dial indicator.

(17) Remove dial indicator from front housing (Figure 3, Item 69).

(18) Rotate front housing (Figure 3, Item 69) so the front is facing up.

(19) Remove two capscrews (Figure 3, Item 86) and lockwashers (85) from enclosure (74) and bearing cap (84).
WARNING
Adhesives, solvents, and sealing compounds can burn easily, can give off harmful vapors, and are harmful to skin and clothing. To avoid injury or death, keep away from open fire and use in well ventilated area. If adhesive, solvent, or sealing compound gets on skin or clothing, wash immediately with soap and water.

(20) Coat shims (Figure 3, Item 80) and six capscrews (86) with Loctite 242.

NOTE
The number of shims installed is the amount required to obtain correct end play.

(21) Install three shims (Figure 3, Item 80) and lower front output assembly on enclosure (74).

(22) Install six lockwashers (Figure 3, Item 85) and capscrews (86) in bearing cap (84) and enclosure (74). Tighten capscrews to 60 ft. lbs. (81 N.m).

(23) Rotate front housing (Figure 3, Item 69) so bottom is facing up.

(24) Coat bearing cone (Figure 2, Items 37 and 9) with Lubriplate.

WARNING
Stay clear of upper shaft assembly when supported by lifting device. Upper shaft assembly may fall and cause serious injury to personnel.

NOTE
End fork shift rod assembly with threaded hole must be face up.
Fork shift rod assembly and upper shaft assembly must be installed simultaneously to prevent binding.

(25) With the use of suitable lifting device, install upper shaft assembly, and shift rod assembly in front housing (Figure 3, Item 69).

(26) Coat bearing cone (Figure 3, Items 11 and 18) with Lubriplate.

WARNING
Stay clear of center shaft assembly when supported by lifting device. Center shaft assembly may fall and cause serious injury to personnel.

(27) With the use of suitable lifting device, install center shaft assembly in front housing (Figure 3, Item 69). Keep parallel to the top input shaft assembly to allow proper meshing of gears.

NOTE
Lip on collar should face top of case.

(28) Install clutch collar (Figure 2, Item 75) on lower shift rod assembly.

(29) Coat hole in bearing support (Figure 3, Item 48) and shaft of lower shift rod assembly with Lubriplate.

(30) Install lower shift rod assembly in bearing support (Figure 3, Item 48).

(31) Coat shafts of upper shift rod assembly (Figure 2, Item 53) and lower shift rod assembly (Figure 2, Item 74) with Lubriplate.

WARNING
Adhesives, solvents, and sealing compounds can burn easily, can give off harmful vapors, and are harmful to skin and clothing. To avoid injury or death, keep away from open fire and use in well ventilated area. If adhesive, solvent, or sealing compound gets on skin or clothing, wash immediately with soap and water.

(32) Coat inner edge of flange on front housing (Figure 3, Item 69) just inside holes, with Loctite 515.

NOTE
Do step (33) if two dowel pins were removed.

(33) Install two dowel pins (Figure 2, Item 16) on front housing (Figure 3, Item 69).

CAUTION
Lower transfer case rear housing straight down to prevent possible damage to shift rod.

(34) With a suitable lifting device, lower rear housing (Figure 2, Item 66) onto shift rod.
assembly to the point where the shift rod is positioned just below the detent passage.

(35) Install inner detent spring (Figure 2, Item 55) and ball (54), then lower rear housing (66) to retain spring and ball, while aligning with two dowel pins (16) at each end.

WARNING
Adhesives, solvents, and sealing compounds can burn easily, can give off harmful vapors, and are harmful to skin and clothing. To avoid injury or death, keep away from open fire and use in well ventilated area. If adhesive, solvent, or sealing compound gets on skin or clothing, wash immediately with soap and water.

(36) Coat the threads of 20 capscrews (Figure 3, Item 68) with Loctite 242.

(37) Install 20 flatwashers (Figure 3, Item 65) and capscrews (68) in front housing (Figure 2, Item 66). Tighten capscrews to 88 ft. lbs. (119 N.m).

(38) Rotate transfer case so the front housing (Figure 3, Item 69) is facing up.

(39) Apply Loctite 515 to the flange end cap (Figure 3, Item 1).

(40) Apply Loctite 242 to threads of six capscrews (Figure 3, Item 4).

(41) Position end cap (Figure 3, Item 1) and install six lockwashers (3) and capscrews (4) on front housing (69). Tighten capscrews to 60 ft. lbs. (81 N.m).

(42) Apply Loctite 515 to outside edge of oil seal (Figure 3, Item 2) and install in end cap (1).

(43) Apply Loctite 515 to the flange of end cap (Figure 3, Item 22).

(44) Apply Loctite 242 to threads of six capscrews (Figure 3, Item 29).

(45) Position end cap (Figure 3, Item 22) and install lockwashers (28) and six capscrews (29) in front housing (69). Tighten capscrews to 60 ft. lbs. (81 N.m).

CAUTION
Do not overtighten the speedometer sending unit. Torques over 35 ft. lbs. (47 N.m) will damage the sending unit.

(46) Coat threads of speedometer sending unit (Figure 3, Item 35) with pipe thread sealant and install in end cap (22). Thread sending unit in until it bottoms out, then back the sending unit out one turn. Tighten jam nut to 25 to 35 ft. lbs. (34 to 47 N.m).

(47) Install oil seal (Figure 3, Item 25), jam nut (26) and rod end (27) on upper shift rod (Figure 2, Item 53).

WARNING
Adhesives, solvents, and sealing compounds can burn easily, can give off harmful vapors, and are harmful to skin and clothing. To avoid injury or death, keep away from open fire and use in well ventilated area. If adhesive, solvent, or sealing compound gets on skin or clothing, wash immediately with soap and water.

(48) Coat the threads of elbow (Figure 3, Item 23), breather (24), and two adapters (36 and 38) with pipe thread sealant.

(49) Install elbow (Figure 3, Item 23), breather (24) and two adapters (36 and 38) in front housing (69).

(50) Rotate transfer case so that rear housing (Figure 2, Item 66) is facing up.

(51) Install three shims (Figure 2, Item 5), end cap (4), six lockwashers (3) and capscrews (2) on rear housing (66). Tighten capscrews to 60 ft. lbs. (81 N.m).

(52) Remove plug (Figure 2, Item 1) from end cap (4) and install dial indicator through hole in end cap (4).

NOTE
End play must be 0.003 - 0.006 in. (0.076 - 0.15 mm). If end play is less than 0.003 in. (0.075 mm), shims must be added. If end play is greater than 0.006 in. (0.15 mm), shims must be removed.

(53) Check and record end play measured on dial indicator.
(54) Remove dial indicator from end cap (Figure 2, Item 4) and install plug (1).

(55) Remove six capscrews (Figure 2, Item 2), lockwashers (3), end cap (4), and three shims (5) from rear housing (66).

WARNING

Adhesives, solvents, and sealing compounds can burn easily, can give off harmful vapors, and are harmful to skin and clothing. To avoid injury or death, keep away from open fire and use in well ventilated area. If adhesive, solvent, or sealing compound gets on skin or clothing, wash immediately with soap and water.

(56) Coat shims (Figure 2, Item 5) and six capscrews (2) with Loctite 242.

NOTE

The number of shims installed is amount required to obtain correct end play.

(57) Install shims (Figure 2, Item 5) and bearing cap (4) in rear housing (66) with six lockwashers (3) and capscrews (2). Tighten capscrews to 60 ft. lbs. (81 N.m).

NOTE

Repeat steps (51) through (59) for end cap (Figure 2, Item 14) of rear housing.

(58) Coat the flange of upper shift cover (Figure 2, Item 34) with Loctite 515.

(59) Install upper shift cover (Figure 2, Item 34), two lockwashers (3), and capscrews (32) in rear housing (66). Tighten capscrews to 14 ft. lbs. (19 N.m).

(60) Coat threads of two adapters (Figure 2, Items 29 and 31) with pipe thread sealant.

(61) Install two adapters (Figure 2, Items 29 and 31) on rear housing (66) and bearing cap (49).

(62) Coat the yoke splines of lower output shaft (Figure 2, Item 52) and end plate (41) with RTV 732.

(63) Coat threads of two capscrews (Figure 2, Item 40) with Loctite 271.

(64) Install yoke (Figure 2, Item 42) end plate (41) and two capscrews (40) on lower rear output shaft (52). Tighten to 88 ft. lbs. (119 N.m).

(65) Connect hose (Figure 2, Item 30) to two adapters (29 and 31).

(66) Apply Loctite 515 to flange of air differential chamber (Figure 2, Item 64), and install with two lockwashers (63), and capscrews (62) on rear housing (66).

(67) Rotate transfer case over so that the front housing (Figure 3, Item 69) is facing up.

WARNING

Adhesives, solvents, and sealing compounds can burn easily, can give off harmful vapors, and are harmful to skin and clothing. To avoid injury or death, keep away from open fire and use in well ventilated area. If adhesive, solvent, or sealing compound gets on skin or clothing, wash immediately with soap and water.

(68) Coat the yoke splines of upper shaft (Figure 2, Item 22), lower front shaft (Figure 3, Item 73), and end plates (Figure 3, Items 6 and 89) with RTV 732.

(69) Coat threads of two capscrews (Figure 3, Items 7 and 90) with Loctite 271.

(70) Install yoke (Figure 3, Item 5), end plate (6), and two capscrews (7) on upper shaft (Figure 2, Item 22). Tighten capscrews to 88 ft. lbs. (119 N.m).

(71) Install yoke (Figure 3, Item 88), end plate (89), and two capscrews (90) on lower front shaft (73). Tighten capscrews to 88 ft. lbs. (119 N.m).

(72) Connect hose (Figure 3, Item 37) on adapters (36 and 38).

8. INSTALLATION.

(1) Attach mounting brackets to transfer case. Fasten transfer case to vehicle frame with mounting bolts and biscuits. Connect prop shafts, air lines, electrical connectors and shift linkage.

(2) Refill with motor oil conforming to API service SE-CC, SAE 50, (MIL-L-2104C). Do not use hypoid or E.P. gear lubricants. Avoid mixing different brands. For subzero arctic operation 0°C to -65°F use arctic oil.
MIL-L-46167. Check oil level every 2500 miles or 125 hours of operations. Every 5000 miles or 250 hours drain housing while hot. Refer to group 85.